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The connection between the Meyer-Neldel rule (MNR) and Urbach rule (UR) is briefly discussed in this paper from the 
viewpoint of the barrier-cluster model of disordered semiconductors. We assume that a significant role in this connection 
has to be ascribed to monoenergetical phonons produced in the process of non-radiative recombination of the electron-
holes (e-h) pairs.  
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1. Introduction 
 
Up to now there is no generally accepted model 

explaining the physical essence of the Meyer-Neldel rule 
[1-12]. One meets a similar situation in interpretations of 
the Urbach rule [13-22]. The author’s intent to explain a 
connection between two unexplained phenomena may 
seem to be strange for the readers. The autors standpoint is 
based on his preceding works, where the barrier-cluster 
model has been proposed and where also the upper 
mentioned phenomena were discused and explained in the 
frame of this model [23-31]. The first considerations 
above Urbach rule has been published in [23, 24] and 
subsequently also an explanation of the Meyer-Neldel rule 
in [27, 29, 30]. From that point of view, the search for a 
relation between both the rules seems to be clear, we 
believe.  

 
 
2. The Urbach rule    
 
The Urbach rule is empirical, describing the 

absorption of light in exponential tails of optical 
absorption spectra. It expresses the dependence of the 
coefficient of the optical absorption α on the photon 
energy hf and the temperature T. Mathematicaly it can be 
expressed by the relation  
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Thus, lnα (hf) is a straight line.  Here γ, E are parameters 
and k is the Boltzmann constant. This relation holds for 

relatively high temperatures. At low temperatures, the 
absorption is given by a relation similar to (1a,b), but the 
real temperature T has to be replaced by a constant 
parameter To.  This point was not explained satisfactorily 
up to now [1, 13-22].                                    
 

2.1  Explanation of the Urbach rule  
 
The Urbach rule in high temperature region has been 

explained by the barrier-cluster model assuming that an 
electron during the optical transition from the conduction 
into valence band can absorb both the energy of a photon   
and of a phonon [23, 24]. Then the energy increase of the 
electron is equal to   

 
hf + Wphon  

 
where Wphon is the energy gained by the electron from 
lattice vibrations.  The photon energy is given by the 
frequency of light. The phonon energy has a statistical 
character. 

If the photon energy  hf < 2W  is less than the width of 
the forbidden gap of a non-crystalline semiconductor then 
the absorption of light cannot happen. But, the absorption 
can come into being if the missing energy  2W – hf  
needed for the transition is supplied by a phonon. This is 
the energy, which an electron needs in order to equalize its 
energy with the width of the forbidden gap. 

The probability of occurrence of phonons with an 
energy higher than or equal to 2W – hf is proportional, at 
temperature T, to the expression 
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The probability of optical absorption (with the 
participation of phonons) is proportional to the same 
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expression. The absorption coefficient α in an energy 
region of photons less than the width of the forbidden gap 
can be determined as 
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where C is a constant. Thus 
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This relation represents a straight line (exponential tail 

of optical absorption), with a slope   decreasing with 
increasing the temperature T. This behaviour corresponds 
to the one known with chalcogenide glasses (if E = 2W).  

However, it has become known from experiments that 
the situation changes with the decrease of the temperature. 
The slope of the straight lines given by (3b) continues 
being unchanged with temperature at low temperatures. 
Only a parallel shift to the lower absorption of 
“exponential tails” is observed. 

The relation (3a) is no longer valid. At lowering the 
temperature of a non-crystalline semiconductor, the 
parameter T in relation (3a) no longer represents a 
temperature. It seems as if the temperature were freezed at 
a certain value of T0. The essence of this phenomenon is 
not reliably explained till now [1], but we will try to 
clarify it partially.  Let us note that the parameter γ is 
about 0,4 – 0,55 [32-34] in the chalcogenide glasses. 
When comparing (1a) and (3a), we see that the barrier-
cluster model yields the constant γ = 0,5. This may be 
considered as a good agreement in the research of non-
crystalline semiconductors.  

From experiments it follows that the parameter E in 
(1a,b) has a value, which corresponds to the width of the 
forbidden band. This is in good agreement with our 
barrier-cluster model. 

 
 
3.  The Meyer-Neldel rule 
 
The MNR has been observed for the first time with 

examining the electric conductivity of non-crystalline 
semiconductors [3]. Semiconductors are characterized by 
their temperature dependence of the electrical conductivity 
[32-34]. Most semiconductors exhibit an exponential 
temperature dependence of the conductivity,  
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where σo is a constant and W is an activation energy. 

For many classes of materials, especially organic 
semi-insulators, chalcogenide glasses, amorphous silicon, 
experimental evidence suggests that a correlation exists 
between the activation energy and the pre-exponential 
factor of the following form [1-12]  

 
000 lnln σσ += bW                                (5a) 

 
where b and σoo are constant. This relation can be written 
as  
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here b = 1/kTo. The relation (5b) gives the dependence of 
the pre-factor σo on the activation energy W and represents 
the Meyer-Neldel empirical rule. Equation (5b) is often 
refereed to as the MN rule or the compensation rule. 
Constant σoo is often called the Meyer-Nedel pre-
exponential factor and kTo the MN characteristic energy.  

This rule holds in disordered materials when W is 
varied by doping, by surface absorption, light soaking or 
by preparing films under different conditions. This rule 
has also been observed in liquid semiconductors and 
fullerens. The validity of the MN rule has also been 
reported in the case of chalcogenide glasses. In the case of 
these glasses this rule is observed by variation of W when 
the composition of the glassy alloys is changed in a 
specific glassy system. Electrical conductivity in dark is 
measured as a function of temperature for this purpose. 

  
3.1 An explanation of the MNR 
 
In the following we will present some notes on one 

possible explanation of MNR, which was published in the 
works [27, 29, 30].  In this model it is assumed, that 
activation energy of a semiconductor influences the 
recombination process of current carriers. An increase of 
activation energy W of a non-crystalline semiconductor 
decreases probability of carrier recombination. This 
process necessary influences equilibrium concentration of 
conduction electrons (carriers) and subsequently electric 
conductivity of the semiconductor. As a result we obtain 
the relation identical with that one representing empirical 
Meyer-Neldel rule.  

 
3.2 Dependence of conductivity on activation  
       energy  
 
A transition of an electron from conduction band to 

valence band in a non-crystalline semiconductor proceeds 
in our case predominantly by production of phonons. The 
total energy of produced phonons will correspond to that 
one released in electron transition. Further we shall 
assume that in a substance under consideration dominates 
phonon production, which average energy is ∆E. It means 
that phonon production of other phonons is negligible. At 
the transition of an electron from conduction band to 
valence band gained energy 2W is used in production of N 
phonons each of them has energy ∆E so that 2W = N∆E or  

 
N = 2W/∆E                                       (6) 

 
Let w1 be the probability of production of one phonon 
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which energy is equal to ∆E. Probability wN of production 
of  N phonons of equal energy ∆E due to the electron – 
lattice interaction will be  
 

wN = (w1)N                                                        (7a)  

If we write down probability w1 as   
 

w1 = exp(-ε1)                                        (8)  
 
where ε1  is a positive value, then probability wN one can 
write with respect to (6,7a) as  
 

wN = exp(-Nε1) = exp(-ε12W/∆E) = exp(-bW)    (7b)  
 
where the constant b is given by  
 

b =  2 ε1/∆E                                 (9)  
 

Relation (8) gives at the same time the probability of 
recombination; it means the transition probability of an 
electron from conduction to valence band. That one is 
proportional to the probability of production of N phonons 
and also proportional to the exp(-bW). With an increase of 
activation energy probability of recombination according 
to (8) exponentially decreases.   

 
3.3 Equilibrium concentration of conduction  
      electrons  
 
In equilibrium (or steady) state it holds  
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A number of free electrons generated in a unit time is 
given as  
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where C1 is a constant.  
For a recombination process we suppose (in 

accordance with the relation (8)) that the relation 
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is valid. Here C2 is a constant. The number of 
recombinations in a unit of  time is proportional to the 
number n as well as to the probability (8) of production of 
n phonons at the electron transition.  In equilibrium state is 
valid R = G, so that  
 

C1 exp(-W/kT) = n.C2 exp(- bW)            (13)  
 
From that relation follows for equilibrium concentration n 
of free carriers  
 

n =  C00exp(bW) exp(-W/kT)                 (14)  

where C00 is determined by the constants C1 and C2.  
 

3.4   Electric conductivity  
 
It is known that electric conductivity σ is proportional 

to n: σ ≈  n. If mobility of carriers is independend on 
activation energy W (or that dependence is negligible) one 
can write with respect to (14)  

 
 σ = σ00 exp(bW) exp(-W/kT)                (15)  

respectively  
 

σ =  σo(W) exp(-W/kT)                         (16)  
 

where σ00 is  a constant and    
  

σo(W) = σoo exp(bW)                           (17) 
 
If we put b = 1/kTMN, the relation (15) takes the form 
which is identical with dependence (4)  
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The relation (17) acquires the form 
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which expresses the conventional Meyer-Neldel rule (3).  
 
 

4.  On the relation of the Meyer-Neldel rule  
     and the Urbach rule  
 
At explanation of Meyer-Neldel rule based on the 

barrier-cluster model we used conception that a non-
radiate recombination transition of an electron from a 
conduction band to a valence band in a non-crystalline 
semiconductor is connected with production of series 
monoenergetical phonons. Further we shall speculate 
about that how these monoenergetical phonons influence 
an optical absorption of the non-crystalline substance. Our 
next consideration shall lead to explanation of a 
mechanism of origin exponential tails of optical absorption 
that is to explanation of the Urbach empirical rule. We 
show this way that there is a connection between Meyer –
Neldel rule and Urbach rule.   

It is known, that exponential tails of the optical 
absorption reach deep in a forbidden band of the width 
2W. If hf < 2W, energy of a photon alone is not sufficient 
for an optical transition of an electron to the conduction 
band. The missing energy 2W – hf phonons can offer to 
electron not only thermal ones (controlling by Maxwell-
Boltzmann distribution function) as it was described 
upper, but also monoenergetical ones. The energy ∆Ε of 
one monoenergetical phonon is small, usually much 
smaller than is deficit of energy 2W – hf   (∆Ε << 2W – 
hf). An optical transition demand the electron has accept 
needed energy N∆Ε from more (N) monoenergetical 
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phonons so as the condition 

 
N∆Ε ≥ 2W – hf                                 (20) 

 
was fulfilled.  

Let w1 denotes probability that an electron at 
optical absorption under upper described conditions 
accepts one monoenergetical phonon of energy ∆Ε. 
Probability of absorption N monoenergetical phonons then 
will be  wN = w1

N.  We shall write down w1 as 
 

w1 = exp(- s)                     (21) 
 
where s > 0 (because w1 < 1). Minimal number N obtained 
monoenergetical phonons then will be  
 

N = (2W-hf)/ ∆Ε, 
so that 
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kde b2 = s/∆Ε. It holds 
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where U = 1/b2 is for a given substance a constant 
parameter. Just probability wN will determine level of an 
optical absorption related to monoenergetical phonons. 
This component of absorption will be proportional to the 
value of wN an so proportional to the expression  
exp(-(2W -. hf)/ U). 

Absorption will consist of two components – besides 
the component given by the relation (3a) there will be 
present the component proportional to the probability wN. 
Resulting coefficient of absorption α can be written as 
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Here 1C ′  a   2C ′ are pre-exponential factors. 
The gained relation is the generalization of the 

relation (3a). The meaning of the first term was explained 
before. The second term represents the contribution of 
monoenergetical phonons to the absorption. The upper 
introduced relation represents a spreading of the relation 
(3a) to the case when absorption is also affected by 
monoenergetical phonons participating in a non-crystalline 
substance.           

In the next consideration we stress that 
monoenergetical phonons can be created by two different 
mechanisms. The first one will be thermal excitation. The 
second one is related to the absorption of light.  The 
parameter   2C ′ consists generally of two components  
 

  2C ′ = C2 t + C2o                                                (25) 

 
The first component corresponds to the thermal 

production of monoenergetical phonons and the second 
one – to the optical production monoenergetical phonons. 
Pre-exponential factors C2 t, C2o are in some measure 
depending on the temperature and energy of the photons. 
The parameter C2o evidently depends also on impacting 
light flux on a sample. The relation (3a) one can write as 
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We assume that dependences of C2 t(T, hf),  

C2o(T, hf,Φ) are not so strong to be change exponential 
character of particular terms in the relation  (24). In this 
relation appear exponential terms explicitly. 

One can expect that at sufficiently high temperature 
the first term on the right of relation (24) dominates. This 
is in agreement with experiments. This term represents 
optical absorption at higher temperature when the slope of 
linear dependences lnα(hf) changes with change of the 
temperature. This corresponds to the Urbach`s rule for 
region of higher temperatures. 

With lowering temperature successively begins 
dominate the second term on the right of the relation (24). 
In such a case the slope of the straight lines of lnα(hf) 
practically becomes unchanged. The possible change of 
parameters C2 t a C2o in the process was ignored. 

In the case of very small illumination C2 t >> C2o, then 
absorption is described by the relation  
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The weak level of illumination under these conditions 

in fact does not affect the value of absorption coefficient. 
In general one can express the absorption coefficient 

as follows  
α = α1 + α2 t + α2o                            (28) 

 
where  
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At low illumination is α = α1 + α2 t. At low illumination 
and high temperatures the term α1 dominates. At higher 
values of the flux of illumination the absorption coefficient 
will depend also on the level of lighting. 
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Now, the question is, when in the relation (24) the 
second term α2 t begins to dominate; or when the slope of 
the straight lines ln(hf) stay unchanged at lowering 
temperature? (Only, small parallel shifts of the tails are 
observed in direction to the lower absorptions.) 

At lowering temperature apparently not only the term 
α1 but also α2 t (to some measure) are decreasing. At 
lowering temperature the production of thermal mono-
energetical phonons decreases and therefore value of the 
parameter C2 t decreases too. There is not doubt about it. 
But, the other factor plays the role. It is process of 
thermalization of mono-energetical phonons. At higher 
temperatures these phonons are intensive scattered – 
thermalized. At lower temperatures this process is less 
effective and subsequently the lifetime of mono-
energetical phonons is longer. Moreover the decrease of 
the parameters C2 t is relatively small and subsequently the 
term α2 t begins to dominate. Of course, this problem calls 
for more detail analysis (This analysis will be certainly not 
simple). 

At intensive lighting of a substance at lower 
temperatures can dominate in the relation (24) the term 
α2o. The value of that term depends on the level of lighting 
(on the light flux). The absorption coefficient is also a 
function of light intensity.  

Notice: In crystalline semiconductors (e.g. of the type 
CdSe) production of mono-energetical phonons is very 
small so that the term α2 t begins to prevail (the term α1 << 
α2 t) at much lower temperature than in non-crystalline 
semiconductors. In semiconductors in which production of 
mono-energetical phonons is negligible, observable 
absorption is determined by the term α1 only. 
Urbach’s exponential tails can appear in semiconductors in 
which the conditions for absorption exist under energetical 
participation of phonons. This is the case of substances in 
which the validity of MNR is observed. In such substances 
probably transition appears through Urbach’s border - that 
is the transition from changing slope of straight lines of 
ln (hf) (by changing temperature) to parallel thermal 
shifting of the tails ln (hf). 
 
 

5.  Open problems and questions 
 
The physics of the disordered materials is extremely 

wide. The publications [32] and [33] belong to the first, 
which offer  the complex of view on this problem. The 
actual questions  are solved and discussed in [34-39]. 

One can oppose to the upper introduced 
considerations. Author is aware that described model of 
relation between MNR and Urbach`s rule possesses 
intuitive background. More detailed theoretical 
substantiation would be needful. This article is intended to 
inspire theoretical physicists involved in the field of 
condensed mater physics to solve that problem. On the 
other side, quantitative theoretical explanation of the 
behavior of exponential tails in the long term resists to the 
theoretical explanation. The present time no standpoint is 
known for promising theory. This is what the author’s 
motivated to submit and publish this intuitive theory.   

5.1 Interpretation of another connection 
 
In frame of the barrier-cluster model it is possible to 

explain other effects observed in experiment, such as the 
temperature dependence of photoconductivity of 
chalcogenide glasses (As2S3) in the low temperature 
region. 

As an example, we can note a plot of the 
photoconductivity dependence on the temperature T 
showed in the figure published in Ref. [1, 22].  One can 
see that the photoconductivity decreases with decreasing 
the temperature, but at a certain low enough temperature, 
this decrease of the photoconductivity is stopped. By 
further lowering the temperature, the photoconductivity 
becomes actually constant. This behaviour of the 
chalcogenide glass can be explained by the use of barrier-
cluster model. 

In the same figure in [1, 22] another graph is seen, 
presenting a dependence of the photoluminescence on the 
temperature. Photoluminescence increases with the 
temperature decrease. At a certain temperature this 
increase stops and a further lowering of the temperature 
actually doesn’t change the photoluminescence. This 
behaviour of the photoluminescence can also be explained 
by the barrier-cluster model. The “temperature fault“ 
appears at the temperature at which the behaviour of both 
the phenomena (photoconductivity and 
photoluminescence) exibits changes. This temperature is 
actually the same for both the phenomena. We do not 
believe that this is accidenta. Analogous dependences were 
described in [18-19]. 

 
5.2  Further remarks 
 
According to the barrier-cluster model [23-31], the 

free electrons catalyze a non-radiant recombination of 
bound e-h pairs. The more non-radiant recombinations, the 
less radiant ones are present, and vice versa. Any decrease 
of free electrons (charge carriers) causes an increase of the 
photoluminescence. On the other hand, when the 
concentration of free electronss enhances, the 
photoluminescence becomes oppressed. Whenever the 
minimum of the conductivity is achieved, the 
luminescence will to attain its maximum value. This 
relationship bettween  the photoconductivity and 
photoluminescence is well observable in the figure 
presented by Tanaka [1, 22]. The primary reason of way 
the optical quantities become saturated at sufficiently low 
temperatures is the production of monoenergetic phonons 
arisen with the optical absorption associated with non-
radiant recombinations of e-h pairs. Thus, the existence of 
monoenergetic phonons enables to clarify not only the 
essence of the MNR, but also the Urbach rule, and even 
other connections between optical phenomena.  

 
6. Conclusion 
 
An explanation of the relation of the Meyer-Neldel 

rule to the Urbach rule has been given in this paper. These 
two phenomena – as we believe - are connected via 
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monoenergetical phonons offering the possibility to 
explain the MNR rule. These monoenergetical phonons 
influence the optical absorption. The monoenergetical 
phonons are also created in a substance at 
photoabsorption. Exploiting a similar approach, it is 
possible to explain observed dependences concerning 
photoconductivity and photoluminescence in the low 
temperature region.  
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